import torch.nn as nn CIFAR10_NUM_CLASSES = 10 class AlexNet(nn.Module): def __init__(self, /, num_classes: int): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), nn.Conv2d(64, 192, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), ) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 2 * 2, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 256 * 2 * 2) x = self.classifier(x) return x