Lab 1 CIFAR10 initial done
This commit is contained in:
parent
671e8d40e6
commit
c75e27a36e
6 changed files with 414 additions and 0 deletions
135
lab1-pytorch-cifar10/test.py
Normal file
135
lab1-pytorch-cifar10/test.py
Normal file
|
|
@ -0,0 +1,135 @@
|
|||
import torch
|
||||
import torch.utils.data
|
||||
import torch.nn as nn
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
import torch.optim as optim
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from alexnet import AlexNet, CIFAR10_NUM_CLASSES
|
||||
|
||||
if not torch.cuda.is_available():
|
||||
raise RuntimeError("CUDA is not available")
|
||||
|
||||
|
||||
NET_SAVE_PATH = "./cifar10_alexnet.pth"
|
||||
|
||||
device: torch.device
|
||||
|
||||
transform = transforms.Compose(
|
||||
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
|
||||
)
|
||||
|
||||
batch_size = 4
|
||||
|
||||
trainset: torchvision.datasets.CIFAR10
|
||||
testset: torchvision.datasets.CIFAR10
|
||||
|
||||
trainloader: torch.utils.data.DataLoader
|
||||
testloader: torch.utils.data.DataLoader
|
||||
|
||||
classes = (
|
||||
"plane",
|
||||
"car",
|
||||
"bird",
|
||||
"cat",
|
||||
"deer",
|
||||
"dog",
|
||||
"frog",
|
||||
"horse",
|
||||
"ship",
|
||||
"truck",
|
||||
)
|
||||
|
||||
|
||||
def load_data():
|
||||
global trainset, trainloader, testset, testloader
|
||||
trainset = torchvision.datasets.CIFAR10(
|
||||
root="./data", train=True, download=True, transform=transform
|
||||
)
|
||||
trainloader = torch.utils.data.DataLoader(
|
||||
trainset, batch_size=batch_size, shuffle=True, num_workers=2
|
||||
)
|
||||
|
||||
testset = torchvision.datasets.CIFAR10(
|
||||
root="./data", train=False, download=True, transform=transform
|
||||
)
|
||||
testloader = torch.utils.data.DataLoader(
|
||||
testset, batch_size=batch_size, shuffle=False, num_workers=2
|
||||
)
|
||||
|
||||
|
||||
def imshow(img):
|
||||
if img.is_cuda:
|
||||
img = img.cpu()
|
||||
img = img / 2 + 0.5
|
||||
npimg = img.numpy()
|
||||
plt.imshow(np.transpose(npimg, (1, 2, 0)))
|
||||
plt.show()
|
||||
|
||||
|
||||
def main():
|
||||
global device
|
||||
device = torch.device("cuda:0")
|
||||
print("Available device:", device)
|
||||
|
||||
load_data()
|
||||
|
||||
net = AlexNet(CIFAR10_NUM_CLASSES).to(device)
|
||||
|
||||
net.load_state_dict(torch.load(NET_SAVE_PATH))
|
||||
|
||||
dataiter = iter(testloader)
|
||||
images, labels = next(dataiter)
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
|
||||
imshow(torchvision.utils.make_grid(images))
|
||||
print("GroundTruth: ", " ".join(f"{classes[labels[j]]:5s}" for j in range(4)))
|
||||
|
||||
outputs = net(images)
|
||||
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
|
||||
print("Predicted: ", " ".join(f"{classes[predicted[j]]:5s}" for j in range(4)))
|
||||
|
||||
correct = 0
|
||||
total = 0
|
||||
|
||||
with torch.no_grad():
|
||||
for data in testloader:
|
||||
images, labels = data
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
|
||||
outputs = net(images)
|
||||
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
total += labels.size(0)
|
||||
correct += (predicted == labels).sum().item()
|
||||
|
||||
print(
|
||||
f"Accuracy of the network on the 10000 test images: {100 * correct // total} %"
|
||||
)
|
||||
|
||||
correct_pred = {classname: 0 for classname in classes}
|
||||
total_pred = {classname: 0 for classname in classes}
|
||||
|
||||
with torch.no_grad():
|
||||
for data in testloader:
|
||||
images, labels = data
|
||||
images, labels = images.to(device), labels.to(device)
|
||||
outputs = net(images)
|
||||
_, predictions = torch.max(outputs, 1)
|
||||
|
||||
for label, prediction in zip(labels, predictions):
|
||||
if label == prediction:
|
||||
correct_pred[classes[label]] += 1
|
||||
total_pred[classes[label]] += 1
|
||||
|
||||
for classname, correct_count in correct_pred.items():
|
||||
accuracy = 100 * float(correct_count) / total_pred[classname]
|
||||
print(f"Accuracy for class: {classname:5s} is {accuracy:.1f} %")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Add table
Add a link
Reference in a new issue