aoc2022/aoc1.ipynb

93 lines
1.9 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"id": "335e32f0-2c5a-4f77-84dd-66c2266e6312",
"metadata": {},
"source": [
"### Part 1"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "42055a53-b495-4615-bdb4-eaddd9380e92",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"72602"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with open(\"aoc1_input.txt\", \"r\") as f:\n",
" elves_raw = f.read().split(\"\\n\\n\")\n",
" elves = map(lambda x: sum(map(int, x.split(\"\\n\"))), elves_raw)\n",
" most_calories = max(elves)\n",
"\n",
"most_calories"
]
},
{
"cell_type": "markdown",
"id": "4523a59c-06bb-4214-a9ce-143885257bb4",
"metadata": {},
"source": [
"### Part 2"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "614216a4-bbe9-40e9-a4b1-108e85946186",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"207410"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with open(\"aoc1_input.txt\", \"r\") as f:\n",
" elves_raw = f.read().split(\"\\n\\n\")\n",
" elves = map(lambda x: sum(map(int, x.split(\"\\n\"))), elves_raw)\n",
" top_3_calories = sum(sorted(elves)[-3:])\n",
"\n",
"top_3_calories"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}