{ "cells": [ { "cell_type": "markdown", "id": "335e32f0-2c5a-4f77-84dd-66c2266e6312", "metadata": {}, "source": [ "### Part 1" ] }, { "cell_type": "code", "execution_count": 14, "id": "42055a53-b495-4615-bdb4-eaddd9380e92", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "72602" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with open(\"aoc1_input.txt\", \"r\") as f:\n", " elves_raw = f.read().split(\"\\n\\n\")\n", " elves = map(lambda x: sum(map(int, x.split(\"\\n\"))), elves_raw)\n", " most_calories = max(elves)\n", "\n", "most_calories" ] }, { "cell_type": "markdown", "id": "4523a59c-06bb-4214-a9ce-143885257bb4", "metadata": {}, "source": [ "### Part 2" ] }, { "cell_type": "code", "execution_count": 16, "id": "614216a4-bbe9-40e9-a4b1-108e85946186", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "207410" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with open(\"aoc1_input.txt\", \"r\") as f:\n", " elves_raw = f.read().split(\"\\n\\n\")\n", " elves = map(lambda x: sum(map(int, x.split(\"\\n\"))), elves_raw)\n", " top_3_calories = sum(sorted(elves)[-3:])\n", "\n", "top_3_calories" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.7" } }, "nbformat": 4, "nbformat_minor": 5 }